If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13t=13t^2+1
We move all terms to the left:
13t-(13t^2+1)=0
We get rid of parentheses
-13t^2+13t-1=0
a = -13; b = 13; c = -1;
Δ = b2-4ac
Δ = 132-4·(-13)·(-1)
Δ = 117
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{117}=\sqrt{9*13}=\sqrt{9}*\sqrt{13}=3\sqrt{13}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-3\sqrt{13}}{2*-13}=\frac{-13-3\sqrt{13}}{-26} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+3\sqrt{13}}{2*-13}=\frac{-13+3\sqrt{13}}{-26} $
| 3x^2+12x+20=80 | | 40-14j=2(-4j-13 | | y+0.2y=56 | | (5s)*4=54 | | (x^2D^2-xD+4)=x) | | (5(6x+3)/6)-(6(2x-1)/5)=-5 | | 4v=24+v | | 18=3(3x=6) | | -2/3x-2=4 | | Y=x2-6 | | 5(6x+3)-6(2x-1)=-5 | | Y=0,25x^2 | | X=9x-350 | | 5+(2r-3)=r-(3r+10) | | F(x)=1/4x+8 | | x^2-4x=-15 | | 7x-3x=x+35 | | -2/3+y=-1/5 | | 3(-x)=-15 | | 10=100x-190 | | 4*x^2+10*x=0 | | 7+5x=75x | | 8(7-x)=70 | | 1/5h+4=3/5h+8 | | 6x2+x-22=0 | | 46x+90=34x-6 | | 8x-3x=2x-19 | | 5=x/3=-5 | | x/190=4/130 | | 28x-12+36=-22x-12-10x | | y-17y+90y-144=0 | | (x^2+4x)/5=0 |